반응형

2025/01 6

[논문리뷰] Domain Generalization-Aware Uncertainty Introspective Learning for 3D Point Clouds Segmentation

Domain Generalization-Aware Uncertainty Introspective Learning for 3D Point Clouds Segmentation | Proceedings of the 32nd ACM International Conference on Multimedia Domain Generalization-Aware Uncertainty Introspective Learning for 3D Point Clouds Segmentation | Proceedings of the 32nd ACM InPublication History Published: 28 October 2024dl.acm.orgProblemWeather condition 등의 domain shift에 대해서 unc..

AI/Paper Review 2025.01.15

[논문리뷰] Single Domain Generalization for LiDAR Semantic Segmentation

Single Domain Generalization for LiDAR Semantic SegmentationProblem타겟으로 하는 2개의 domain에 대해서는 잘 되는 모습을 보이지만, 정작 unseen domain에 대해서는 좋지 못한 성능을 보인다.sparsity invariant feature를 만들지 못하고 있다.dataset 간의 semantic correlation을 잘 활용하지 못하고 있다.SolutionSpherical projection 기반으로 beam 단위의 drop을 수행 → multi-sparsity augmentation SIFC loss: Sparsity Invariant Feature Consistency. Voxel별 align. 비어있는 voxel은 knn해서 wei..

AI/Paper Review 2025.01.15

[LeetCode] 371. Sum of Two Integers

Sum of Two Integers - LeetCodeBinary operation을 사용하는 기본 문제라고 한다. Given two integers a and b, return the sum of the two integers without using the operators + and -.Example 1:Input: a = 1, b = 2 Output: 3Example 2:Input: a = 2, b = 3 Output: 5첫 시도하지만 역시 또 time limit에 걸려버렸다. 역시 나야!class Solution: def getSum(self, a: int, b: int) -> int: while b != 0: _and = a & b _x..

[LeetCode] 70. Climbing Stairs

Climbing Stairs - LeetCode Dynamic Programming 문제 중 가장 쉬운 버전이다. 70. Climbing StairsYou are climbing a staircase. It takes n steps to reach the top.Each time you can either climb 1 or 2 steps. In how many distinct ways can you climb to the top?Example 1:Input: n = 2 Output: 2 Explanation: There are two ways to climb to the top. 1. 1 step + 1 step 2. 2 stepsExample 2: Input: n = 3 Output: 3 Explan..

[논문리뷰] AllWeatherNet:Unified Image Enhancement for Autonomous Driving under Adverse Weather and Lowlight-conditions

[2409.02045] AllWeatherNet:Unified Image Enhancement for Autonomous Driving under Adverse Weather and Lowlight-conditions AllWeatherNet:Unified Image Enhancement for Autonomous Driving under Adverse Weather and Lowlight-conditionsAdverse conditions like snow, rain, nighttime, and fog, pose challenges for autonomous driving perception systems. Existing methods have limited effectiveness in improv..

AI/Paper Review 2025.01.01

[논문리뷰] Image Hazing and Dehazing: From the Viewpoint of Two-Way Image Translation With a Weakly Supervised Framework

Image Hazing and Dehazing: From the Viewpoint of Two-Way Image Translation With a Weakly Supervised Framework | IEEE Transactions on Multimedia Image Hazing and Dehazing: From the Viewpoint of Two-Way Image Translation With a Weakly Supervised Framework | IEEE TransactionImage dehazing is an important task since it is the prerequisite for many downstream high-level computer vision tasks. Previou..

AI/Paper Review 2025.01.01
반응형